
Mining the Surface: Proof Mining in the Bounded World

Amir Akbar Tabatabai

Czech Academy of Sciences

amir.akbar@gmail.com

July 3, 2018

Amir Akbar Tabatabai Mining the Surface July 3, 2018 1 / 16

A Proof Theoretical Dream

Let’s begin with the following problem:

Π0
1-Independence

Let A ∈ Π0
1 be an arithmetical statement and T an arithmetical theory.

How can we prove that A is unprovable in T?

There are some well-known methods to solve this problem, including:

Using the second incompleteness theorem. In this case it is enough to
reduce A to the consistency of T ,

Using propositional proof complexity. If T is a bounded theory of
arithmetic, it is possible to transform a proof of A in T to a sequence
of short proofs of the propositional version of A, in a corresponding
propositional calculus PT . Then proving a super-polynomial lower
bound for PT leads to the unprovability of A in T .

Example: Pigeonhole principle is unprovable in I∆0(R).

Amir Akbar Tabatabai Mining the Surface July 3, 2018 2 / 16

A Proof Theoretical Dream

Let’s begin with the following problem:

Π0
1-Independence

Let A ∈ Π0
1 be an arithmetical statement and T an arithmetical theory.

How can we prove that A is unprovable in T?

There are some well-known methods to solve this problem, including:

Using the second incompleteness theorem. In this case it is enough to
reduce A to the consistency of T ,

Using propositional proof complexity. If T is a bounded theory of
arithmetic, it is possible to transform a proof of A in T to a sequence
of short proofs of the propositional version of A, in a corresponding
propositional calculus PT . Then proving a super-polynomial lower
bound for PT leads to the unprovability of A in T .

Example: Pigeonhole principle is unprovable in I∆0(R).

Amir Akbar Tabatabai Mining the Surface July 3, 2018 2 / 16

A Proof Theoretical Dream

Let’s begin with the following problem:

Π0
1-Independence

Let A ∈ Π0
1 be an arithmetical statement and T an arithmetical theory.

How can we prove that A is unprovable in T?

There are some well-known methods to solve this problem, including:

Using the second incompleteness theorem. In this case it is enough to
reduce A to the consistency of T ,

Using propositional proof complexity. If T is a bounded theory of
arithmetic, it is possible to transform a proof of A in T to a sequence
of short proofs of the propositional version of A, in a corresponding
propositional calculus PT . Then proving a super-polynomial lower
bound for PT leads to the unprovability of A in T .

Example: Pigeonhole principle is unprovable in I∆0(R).

Amir Akbar Tabatabai Mining the Surface July 3, 2018 2 / 16

A Proof Theoretical Dream

Let’s begin with the following problem:

Π0
1-Independence

Let A ∈ Π0
1 be an arithmetical statement and T an arithmetical theory.

How can we prove that A is unprovable in T?

There are some well-known methods to solve this problem, including:

Using the second incompleteness theorem. In this case it is enough to
reduce A to the consistency of T ,

Using propositional proof complexity. If T is a bounded theory of
arithmetic, it is possible to transform a proof of A in T to a sequence
of short proofs of the propositional version of A, in a corresponding
propositional calculus PT . Then proving a super-polynomial lower
bound for PT leads to the unprovability of A in T .

Example: Pigeonhole principle is unprovable in I∆0(R).

Amir Akbar Tabatabai Mining the Surface July 3, 2018 2 / 16

A Proof Theoretical Dream

But there is no general method to prove the unprovability of a Π0
1

statement. Compare the situation with Π0
2 statements. Using ordinal

analysis we have a characterization of all provably recursive functions by
their growth rate captured by the proof theoretic ordinal of the theory.
Hence:

To prove the unprovability of a Π0
2 statement, it is enough to show that it

defines a function with higher growth rate than what αT captures.

The reason why the Π0
1 case is so complex is that the class Π0

1 can be
interpreted as a hierarchy of bounded formulas and hence its behavior
depends on the open conjectures of the complexity theory.
For this matter, narrow down the problem to:

Amir Akbar Tabatabai Mining the Surface July 3, 2018 3 / 16

A Proof Theoretical Dream

But there is no general method to prove the unprovability of a Π0
1

statement. Compare the situation with Π0
2 statements. Using ordinal

analysis we have a characterization of all provably recursive functions by
their growth rate captured by the proof theoretic ordinal of the theory.
Hence:

To prove the unprovability of a Π0
2 statement, it is enough to show that it

defines a function with higher growth rate than what αT captures.

The reason why the Π0
1 case is so complex is that the class Π0

1 can be
interpreted as a hierarchy of bounded formulas and hence its behavior
depends on the open conjectures of the complexity theory.
For this matter, narrow down the problem to:

Amir Akbar Tabatabai Mining the Surface July 3, 2018 3 / 16

A Proof Theoretical Dream

But there is no general method to prove the unprovability of a Π0
1

statement. Compare the situation with Π0
2 statements. Using ordinal

analysis we have a characterization of all provably recursive functions by
their growth rate captured by the proof theoretic ordinal of the theory.
Hence:

To prove the unprovability of a Π0
2 statement, it is enough to show that it

defines a function with higher growth rate than what αT captures.

The reason why the Π0
1 case is so complex is that the class Π0

1 can be
interpreted as a hierarchy of bounded formulas and hence its behavior
depends on the open conjectures of the complexity theory.
For this matter, narrow down the problem to:

Amir Akbar Tabatabai Mining the Surface July 3, 2018 3 / 16

Total NP-Search Problems

Total NP-Search Problems

Let B(x , y) be a p-time computable predicate,
A = ∀x∃|y | ≤ p(|x |)B(x , y) and T an arithmetical theory. How can we
prove that A is unprovable in T?

The growth rate does not work anymore because the function is
already bounded by the exponential function. Hence the height of the
function does not work. But what about its width, namely the
complexity of its most clever algorithm?

There is a trivial brute-force algorithm to find y based on searching all
possible values below 2p(|x |). The soundness of this algorithm is just
based on the the fact that A is true. But we also know a T -proof of
A.

Amir Akbar Tabatabai Mining the Surface July 3, 2018 4 / 16

Total NP-Search Problems

Total NP-Search Problems

Let B(x , y) be a p-time computable predicate,
A = ∀x∃|y | ≤ p(|x |)B(x , y) and T an arithmetical theory. How can we
prove that A is unprovable in T?

The growth rate does not work anymore because the function is
already bounded by the exponential function. Hence the height of the
function does not work. But what about its width, namely the
complexity of its most clever algorithm?

There is a trivial brute-force algorithm to find y based on searching all
possible values below 2p(|x |). The soundness of this algorithm is just
based on the the fact that A is true. But we also know a T -proof of
A.

Amir Akbar Tabatabai Mining the Surface July 3, 2018 4 / 16

Total NP-Search Problems

Total NP-Search Problems

Let B(x , y) be a p-time computable predicate,
A = ∀x∃|y | ≤ p(|x |)B(x , y) and T an arithmetical theory. How can we
prove that A is unprovable in T?

The growth rate does not work anymore because the function is
already bounded by the exponential function. Hence the height of the
function does not work. But what about its width, namely the
complexity of its most clever algorithm?

There is a trivial brute-force algorithm to find y based on searching all
possible values below 2p(|x |). The soundness of this algorithm is just
based on the the fact that A is true. But we also know a T -proof of
A.

Amir Akbar Tabatabai Mining the Surface July 3, 2018 4 / 16

The Main Theorem (informal)

Following Kreisel, let us ask the following question:

Proof Mining

Does a T -proof of A lead to a more clever algorithm than the blind
brute-force? Is it possible to measure this sort of “cleverness” by ordinals?

The answer is Yes!

The Main Theorem (informal)

Let B(x , y) be a p-time computable predicate, p a polynomial,
A = ∀x∃|y | ≤ p(|x |)B(x , y) and T an arithmetical theory with the proof
theoretic ordinal α. Then TFAE:

T ` A

There exists β ≺ α and a sequence of the length β of poly-time
verifiable computational steps beginning by zero and ending in y such
that B(x , y).

Amir Akbar Tabatabai Mining the Surface July 3, 2018 5 / 16

The Main Theorem (informal)

Following Kreisel, let us ask the following question:

Proof Mining

Does a T -proof of A lead to a more clever algorithm than the blind
brute-force? Is it possible to measure this sort of “cleverness” by ordinals?

The answer is Yes!

The Main Theorem (informal)

Let B(x , y) be a p-time computable predicate, p a polynomial,
A = ∀x∃|y | ≤ p(|x |)B(x , y) and T an arithmetical theory with the proof
theoretic ordinal α. Then TFAE:

T ` A

There exists β ≺ α and a sequence of the length β of poly-time
verifiable computational steps beginning by zero and ending in y such
that B(x , y).

Amir Akbar Tabatabai Mining the Surface July 3, 2018 5 / 16

It is not that obvious!

We mentioned that A is solvable using a brute-force algorithm of checking
all possibilities for y . It takes finite (i.e., 2p(|x |)) many steps, far less than
any infinite ordinal. Where does the problem lie?

Poly-time Verifiablity

A step is called poly-time verifiable if it represents a poly-time algorithm
whose soundness is provable via poly-time reasoning in PV.

The brute-force algorithm is not local:

The Algorithm: Check all y ’s in order till reaching a y such that B(x , y).
Then keep that y till the end of the process and then return it.

However, to ensure that this y works, you have to know the existence of a
y ≤ 2p(|x |)B(x , y) already, and this is not necessarily provable in PV.

Amir Akbar Tabatabai Mining the Surface July 3, 2018 6 / 16

It is not that obvious!

We mentioned that A is solvable using a brute-force algorithm of checking
all possibilities for y . It takes finite (i.e., 2p(|x |)) many steps, far less than
any infinite ordinal. Where does the problem lie?

Poly-time Verifiablity

A step is called poly-time verifiable if it represents a poly-time algorithm
whose soundness is provable via poly-time reasoning in PV.

The brute-force algorithm is not local:

The Algorithm: Check all y ’s in order till reaching a y such that B(x , y).
Then keep that y till the end of the process and then return it.

However, to ensure that this y works, you have to know the existence of a
y ≤ 2p(|x |)B(x , y) already, and this is not necessarily provable in PV.

Amir Akbar Tabatabai Mining the Surface July 3, 2018 6 / 16

It is not that obvious!

We mentioned that A is solvable using a brute-force algorithm of checking
all possibilities for y . It takes finite (i.e., 2p(|x |)) many steps, far less than
any infinite ordinal. Where does the problem lie?

Poly-time Verifiablity

A step is called poly-time verifiable if it represents a poly-time algorithm
whose soundness is provable via poly-time reasoning in PV.

The brute-force algorithm is not local:

The Algorithm: Check all y ’s in order till reaching a y such that B(x , y).
Then keep that y till the end of the process and then return it.

However, to ensure that this y works, you have to know the existence of a
y ≤ 2p(|x |)B(x , y) already, and this is not necessarily provable in PV.

Amir Akbar Tabatabai Mining the Surface July 3, 2018 6 / 16

Formalization: A Poly-time Ordinal Representation

Definition

Let α be an ordinal with a primitive recursive representation. Then we say

A = (A,≺A,+A, ·A,−A, dA(·, ·), 0A, 1A)

is a polytime representation of the ordinal α when A and ≺A are polytime
relations, +A, ·A,−A, dA(·, ·) are polytime functions and constants 0A, 1A
such that:

(i) The structure A = (A,≺A,+A, ·A,−A, dA(·, ·), 0A, 1A) is isomorphic
to A = (α,≺α,+α, ·α,−α, dA(·, ·), 0α, 1α) where −α, dA(·, ·) are
subtraction and division from right, i.e. for β � α we have α− β = γ
where β + γ = α and otherwise, α− β = 0. For division, if β 6= 0, by
d(α, β) we mean the unique γ where α = βγ + δ and δ ≺ β.

Amir Akbar Tabatabai Mining the Surface July 3, 2018 7 / 16

Formalization: A Poly-time Ordinal Representation

Definition

(ii) PV proves the axioms of discrete ordered semi-rings for the structure
A without the commutativity of addition and the axioms which state
that ≺A preserves under left addition and left multiplication by a
non-zero element.

(iii) PRA proves that A is equivalent to the primitive recursive
representation of A.

Amir Akbar Tabatabai Mining the Surface July 3, 2018 8 / 16

Ordinal Flows

Define ∀1 as the class of all universal formulas which is inductively defined
as the least set that includes p-time predicates and is closed under
conjunction, disjunction, implication with p-time precedent and universal
quantifiers.

Definition

Let A(~x), B(~x) and H(δ, ~x) be some formulas in ∀1. A tuple (H, β) where
β ≺ α is called an α-flow if

(i) PV ` A(~x)↔ H(0, ~x).

(ii) PV ` ∀ 1 � δ ≺ β [∀γ ≺ δ H(γ, ~x)→ ∀γ ≺ δ + 1 H(γ, ~x)].

(iii) PV ` H(β, ~x)↔ B(~x).

We denote the existence of an α-flow from A to B by ABα B and we
abbreviate

∧
Γ Bα

∨
∆ by Γ Bα ∆. Moreover, when it is clear from the

context, we omit the subscript α everywhere.

Amir Akbar Tabatabai Mining the Surface July 3, 2018 9 / 16

The Main Lemma

The following lemma establishes a high-level calculus for the ordinal flows:

The Main Lemma

(Conjunction left.) If Γ,AB ∆ then Γ,A ∧ B B ∆ and Γ,B ∧ AB ∆.

(Conjunction right.) If Γ B ∆,A and Γ B ∆,B then Γ B ∆,A ∧ B.

(Disjunction left.) If Γ,AB ∆ and Γ,B B ∆ then Γ,A ∨ B B ∆.

(Disjunction right.) If Γ B ∆,A then Γ B ∆,A ∨ B and Γ B ∆,B ∨ A.

(Cut.) If Γ B ∆,A and Γ′,AB ∆′ then Γ, Γ′ B ∆,∆′.

(Contraction left.) If Γ,A,AB ∆ then Γ,AB ∆.

(Contraction right.) If Γ B ∆,A,A then Γ B ∆,A.

(Universal left.) If Γ,A(t) B ∆ then Γ,∀y A(y) B ∆.

(Universal right.) If Γ B ∆,A(y) then Γ B ∆, ∀y A(y).

(Induction.) If Γ, ∀γ ≺ δ A(γ) B ∆, ∀γ ≺ δ + 1 A(γ) then
Γ B ∆,A(β).

Amir Akbar Tabatabai Mining the Surface July 3, 2018 10 / 16

The Main Theorem (formal)

The Main Theorem (A.A.)

Let T be a theory of arithmetic, αT be its proof theoretic ordinal with a
polynomial time representation and Γ ∪∆ ⊆ ∀1. Then T ` Γ⇒ ∆ iff
Γ BαT

∆.

Proof.

The completeness part is easy. For the soundness part, use continuous cut
elimination technique to transform the proof in T to a proof in
PRA +

⋃
β≺α ∀1 − TI(≺β). Then interpret this theory in a theory

consisting of just p-time functions and transfinite induction on formulas in
∀1. Finally use induction on the length of the last proof and the main
lemma to prove that if Γ⇒ ∆ is provable, then Γ B ∆.

Amir Akbar Tabatabai Mining the Surface July 3, 2018 11 / 16

The Main Theorem (formal)

Paraphrasing the main theorem, we have:

Theorem (A.A.)

Let B(x , y) be a p-time computable predicate, p be a polynomial,
A = ∀x∃|y | ≤ p(|x |)B(x , y) and T an arithmetical theory with the proof
theoretic ordinal α. Then TFAE:

1 T ` A,

2 There exists β ≺ α, polytime computable functions f , g , h and a
polytime computable predicate G (u, z) such that:

PV ` G (β, 0),
PV ` 0 ≺ γ � β → g(γ, z) ≺ γ,
PV ` G (γ, z)→ G (g(γ, z), f (γ, z)),
PV ` G (0, z)→ [|h(z)| ≤ p(|x |) ∧ B(x , h(z))].

Amir Akbar Tabatabai Mining the Surface July 3, 2018 12 / 16

The Main Theorem (formal)

Proof.

Since T ` ∀y(|y | ≤ p(|x |)→ ¬B(x , y))⇒ ⊥ We have:

(i) PV ` [∀y(|y | ≤ p(|x |)→ ¬B(x , y))]↔ H(0, ~x).

(ii) PV ` ∀ 1 � δ ≺ θ [∀γ ≺ δ H(γ, ~x)→ ∀γ ≺ δ + 1 H(γ, ~x)].

(iii) PV ` H(θ, ~x)↔ ⊥.

Since H ∈ ∀1 it is in the form ∀zK (u, z) where K is a p-time predicate.
W.l.o.g define K (θ + 1, z) = ⊥. Using the Herbrand’s theorem and some
minor tricks we have some polytime functions f , g and h such that:

PV ` ¬K (θ + 1, 0),

PV ` 0 ≺ γ � θ + 1→ g(γ, z) ≺ γ,

PV ` ¬K (γ, z)→ ¬K (g(γ, z), f (γ, z)),

PV ` ¬K (0, z)→ [|h(z)| ≤ p(|x |) ∧ B(x , h(z))].

Finally define β = θ + 1 and G = ¬K .

Amir Akbar Tabatabai Mining the Surface July 3, 2018 13 / 16

Applications I

Applying the theorem to PA we have:

Corollary (A. Beckmann)

Let B(x , y) be a p-time computable predicate, p be a polynomial and
A = ∀x∃|y | ≤ p(|x |)B(x , y). Then TFAE:

1 PA ` A,

2 There exists β ≺ ε0, polytime computable functions f , g , h and a
polytime computable predicate G (u, z) such that:

PV ` G (β, 0),
PV ` 0 ≺ γ � β → g(γ, z) ≺ γ,
PV ` G (γ, z)→ G (g(γ, z), f (γ, z)),
PV ` G (0, z)→ [|h(z)| ≤ p(|x |) ∧ B(x , h(z))].

Amir Akbar Tabatabai Mining the Surface July 3, 2018 14 / 16

Applications II

Applying the theorem to the extensions of PA we have:

Corollary (A.A.)

Let B(x , y) be a p-time computable predicate, p be a polynomial,
A = ∀x∃|y | ≤ p(|x |)B(x , y) and α is closed under the operation β 7→ ωβ.
Then TFAE:

1 PA +
⋃

β≺αTI(β) ` A,

2 There exists β ≺ α, polytime computable functions f , g , h and a
polytime computable predicate G (u, z) such that:

PV ` G (β, 0),
PV ` 0 ≺ γ � β → g(γ, z) ≺ γ,
PV ` G (γ, z)→ G (g(γ, z), f (γ, z)),
PV ` G (0, z)→ [|h(z)| ≤ p(|x |) ∧ B(x , h(z))].

Amir Akbar Tabatabai Mining the Surface July 3, 2018 15 / 16

Thank you for your attention!

Amir Akbar Tabatabai Mining the Surface July 3, 2018 16 / 16

